Saturday, April 2, 2011


Assistant Professor
Department of Architecture and Planning
NED University of Engineering and Technology

‘Air cooling is a method of dissipating heat. It works by making the object to be cooled have a larger surface area or have an increased flow of air over its surface, or both. An example of the former is to add fins to the surface of the object, either by making them integral or by attaching them tightly to the object's surface (to ensure efficient heat transfer). In the case of the latter it is done by using a fan blowing air into or onto the object one wants to cool. In many cases the addition of fins adds to the total surface area making a heat sink that makes for greater efficiency in cooling. In all cases, the air has to be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air).’[1]

‘Central air conditioning, commonly referred to as central air (U.S.) or air-con (UK), is an air conditioning system that uses ducts to distribute cooled and/or dehumidified air to more than one room, or uses pipes to distribute chilled water to heat exchangers in more than one room, and which is not plugged into a standard electrical outlet. With a typical split system, the condenser and compressor are located in an outdoor unit; the evaporator is mounted in the air handler unit. With a package system, all components are located in a single outdoor unit that may be located on the ground or roof. Central air conditioning performs like a regular air conditioner but has several added benefits: When the air handling unit turns on, room air is drawn in from various parts of the building through return-air ducts. This air is pulled through a filter where airborne particles such as dust and lint are removed. Sophisticated filters may remove microscopic pollutants as well. The filtered air is routed to air supply ductwork that carries it back to rooms. Whenever the air conditioner is running, this cycle repeats continually. Because the condenser unit (with its fan and the compressor) is located outside the home, it offers a lower level of indoor noise than a free-standing air conditioning unit.’[2]

‘A fan coil unit (FCU) is a simple device consisting of a heating or cooling coil and fan. It is part of an HVAC system found in residential, commercial, and industrial buildings. Typically a fan coil unit is not connected to ductwork, and is used to control the temperature in the space where it is installed, or serve multiple spaces. It is controlled either by a manual on/off switch or by thermostat. Due to their simplicity, fan coil units are more economical to install than ducted or central heating systems with air handling units. However, they can be noisy because the fan is within the same space. Unit configurations are numerous including horizontal (ceiling mounted) or vertical (floor mounted).’[3]
It should be first appreciated that 'Fan Coil Unit' is a generic term that is applied to a range of products. Also, the term 'Fan Coil Unit' will mean different things to users, specifiers and installers in different countries and regions, particularly in relation to product size and output capability.

A fan coil unit may be concealed or exposed within the room or area that it serves.

An exposed fan coil unit may be wall mounted, freestanding or ceiling mounted, and will typically include an appropriate enclosure to protect and conceal the fan coil unit itself, with return air grille and supply air diffuser set into that enclosure to distribute the air.

A concealed fan coil unit will typically be installed within an accessible ceiling void or services zone. The return air grille and supply air diffuser, typically set flush into the ceiling, will be ducted to and from the fan coil unit and thus allows a great degree of flexibility for locating the grilles to suit the ceiling layout and/or the partition layout within a space. It is quite common for the return air not to be ducted and to use the ceiling void as a return air plenum.

The coil receives hot or cold water from a central plant, and removes heat from or adds heat to the air through heat transfer. Traditionally fan coil units can contain their own internal thermostat, or can be wired to operate with a remote thermostat. However, and as is common in most modern buildings with a Building Energy Management System (BEMS), the control of the fan coil unit will be by a local digital controller or outstation (along with associated room temperature sensor and control valve actuators) linked to the BEMS via a communication network, and therefore adjustable and controllable from a central point, such as a supervisors head end computer.

Fan coil units circulate hot or cold water through a coil in order to condition a space. The unit gets its hot or cold water from a central plant, or mechanical room containing equipment for removing heat from the central building's closed-loop. The equipment used can consist of machines used to remove heat such as a chiller or a cooling tower and equipment for adding heat to the building's water such as a boiler or a commercial water heater.

Fan coil units are divided into two types:
  1. Two-pipe fan coil units
Two-pipe fan coil units have one (1) supply and one (1) return pipe. The supply pipe supplies either cold or hot water to the unit depending on the time of year.
  1. Four-pipe fan coil units
Four-pipe fan coil units have two (2) supply pipes and two (2) return pipes. This allows either hot or cold water to enter the unit at any given time. Since it is often necessary to heat and cool different areas of a building at the same time, due to differences in internal heat loss or heat gains, the four-pipe fan coil unit is most commonly used.

Fan coil units may be connected to piping networks using various topology designs, such as "direct return", "reverse return", or "series decoupled". See ASHRAE Handbook "2008 Systems & Equipment", Chapter 12.
Depending upon the selected chilled water temperatures and the relative humidity of the space, it is likely that the cooling coil will dehumidify the entering air stream, and as a byproduct of this process, it will at times produce a condensate which will need to be carried to drain. The fan coil unit will contain a purpose designed drip tray with drain connection for this purpose. The simplest means to drain the condensate from multiple fan coil units will be by a network of pipe work laid to falls to a suitable point. Alternatively a condensate pump may be employed where space for such gravity pipe work is limited.

Speed control of the fan motors within a fan coil unit is effectively used to control the heating and cooling output desired from the unit. This is normally achieved by manually adjusting the taps on an AC transformer supplying the power to the fan motor. Typically this is adjusted at the commissioning stage of the building construction process and is therefore set for life. However alternative means of external speed control by electronic means through the BEMS can be provided if so required. Fan motors are typically AC type motors but more recently DC motors have been made available by some manufacturers, particularly in the UK, which do offer significant energy savings.

These motors are sometimes called DC motors, sometimes called EC motors and occasionally EC/DC motors. DC stands for Direct Current and EC stands for Electronically Commutated.

DC motors allow the speed of the fans within a Fan Coil Unit to be controlled by means of a 0-10 Volt input 'Signal' to the motor/s, the transformers and speed switches associated with AC Fan Coils are not required. Up to a signal voltage of 2.5Volts (which may vary with different fan / motor manufacturers) the fan will be in a stopped condition but as the signal voltage is increased, the fan will seamlessly increase in speed until the maximum is reached at a signal Voltage of 10 Volts. Fan Coils will generally operate between approximately 4 Volts and 7.5 Volts because below 4 Volts the air volumes are ineffective and above 7.5 Volts the Fan Coil is likely to be too noisy for most commercial applications.

The 0-10 Volt signal voltage can be set via a simple potentiometer and left or the 0-10 Volt signal voltage can be delivered to the fan motors by the terminal controller on each of the Fan Coil Units. The former is very simple and cheap but the later opens up the opportunity to continuously alter the fan speed depending on various external conditions / influences. These conditions / criteria could be the 'real time' demand for heating or cooling, occupancy levels, window switches, time clocks or any number of other inputs from the unit itself, the Building Management System or both.

The reason that these DC Fan Coil Units are, despite their apparent relative complexity, becoming more popular is their improved energy efficiency levels compared to their AC motor driven counterparts of only a few years ago. A straight swap, AC to DC, will reduce electrical consumption by 50% but applying Demand and Occupancy dependant fan speed control can take the savings to as much as 80%. In areas of the world where there are legally enforceable energy efficiency requirements for Fan Coils (such as the UK), DC Fan Coil Units are rapidly becoming the only choice.

Fan coil units are typically used in spaces where economic installations are preferred such as unoccupied storage rooms, corridors, loading docks.

In high-rise buildings, fan coils may be stacked, located one above the other from floor to floor and all interconnected by the same piping loop.

Fan coil units are an excellent delivery mechanism for hydronic chiller boiler systems in large residential and light commercial applications. In these applications the fan coil units are mounted in bathroom ceilings and can be used to provide unlimited comfort zones - with the ability to turn off unused areas of the structure to save energy.

In high-rise residential construction, typically each fan coil unit requires a rectangular through-penetration in the concrete slab on top of which it sits. Usually, there are either 2 or 4 pipes made of ABS, steel or copper that goes through the floor. The pipes are usually insulated with refrigeration insulation, such as acrylonitrile butadiene/polyvinyl chloride (AB/PVC) flexible foam on all pipes or at least the cool lines.

A unit ventilator is a fan coil unit that is used mainly in classrooms, hotels, apartments and condominium applications. A unit ventilator can be a wall mounted or ceiling hung cabinet, and is designed to use a fan to blow air across a coil, thus conditioning the space which it is serving.

1. (retrieved April 2, 2011)
3. (retrieved April 2, 2011)


  1. This is a massive info you have shared here about Central air conditioners, appreciate this work, thank you very much.

  2. Power Cord Manufacturers And Suppliers

    We are a renowned manufacturer of an enhanced quality Power Cord. This Power Cord is applicable in a number of computers as a connector. Our manufactured Power Cord is fabricated using premium quality raw material in compliance with set industry standards. Power Cord manufactured by us is widely appreciated in the market for its premium quality and sleek design. Power cord at very low prices for the clients. Call Us 91- 9899000668.

  3. Power Cord Manufacturers And Suppliers

    We are a renowned manufacturer of an enhanced quality Power Cord. This Power Cord is applicable in a number of computers as a connector. Our manufactured Power Cord is fabricated using premium quality raw material in compliance with set industry standards. Power Cord manufactured by us is widely appreciated in the market for its premium quality and sleek design. Power cord at very low prices for the clients. Call Us 91- 9899000668.

  4. The breeze through the home can make the air temperature feel cooler gas furnace prices